Every non-empty set of real numbers which has an lower bond has the.
A. Infimum
B. Supremum
C. Both A \& B
D. None of these

ANSWER: A

If f is monotonic increasing on $[a, b]$ and is bounded on $[a, b]$ then f is \qquad on [a, b].
A. Integrable
B. Increasing function
C. Continuous
D. Decreasing function

ANSWER: A
$Z=\{1,2,3,4, \ldots\}$, the set is.
A. Bounded above
B. Bounded below
C. Not bounded above
D. Both A and B

ANSWER: B

A function which is one-one and onto at a time is called.
A. Bijective function
B. Increasing function
C. Decreasing function
D. None of these

ANSWER: A

The function $f(x)=x 3-3 x+7$ has a critical point at.
A. 2
B. 3
C. 2/3
D. $3 / 2$

ANSWER: D

The function $f(x)=2 x 2-8 x+4$ is increasing on the interval.
A. (-infinity,0]
B. [0,infinity)
C. [2,infinity)
D. $[0,2]$

ANSWER: C

Improper integral is also called.
A. Generalized
B. Infinite
C. Finite
D. Both A and B

ANSWER: D

Beta function is also known as.
A. Beta integral
B. Eulerian integral
C. Both A and B
D. None of these

ANSWER: C

Maxima and Minima occur.
A. Simultaneously
B. Once
C. Alternately
D. Rarely

ANSWER: C

A function defined from $R->R$ is called.
A. Definite function
B. Real valued function
C. Both A and B
D. None of these

ANSWER: B

De L' Hospital was the famous mathematician of.
A. French
B. German
c. American
D. None

ANSWER: A

If f^{\prime} is Integrable on $[a, b]$ with $b>a$, then.
A. Integrate[$f^{\prime}=f(a)-f(b)$,lim $\left.a->b\right]$
B. Integrate[$f^{\prime}=f(b)-f(a)$, lim $\left.a->b\right]$
C. Integrate $\left[f^{\prime}=f^{\prime}(a)-f^{\prime}(b), \lim a->b\right]$
D. Integrate $\left[f^{\prime}=f^{\prime}(b)-f^{\prime}(a), \lim a->b\right]$

ANSWER: B

Euler was mathematician of.
A. France
B. German
C. Scotland
D. Swiss

ANSWER: D

The slop intercept form is also called.
A. Normal form
B. Parametric form
C. Straight line
D. Gradient form

ANSWER: D

The segment of the y-axis intercepted within the ellipse as the.
A. Major axis
B. Minor axis
C. Discriminant
D. None

ANSWER: B

Two diameters are said to be conjugate when each bisects chords \qquad to each other.
A. Differ
B. Parallel
C. Perpendicular
D. None

ANSWER: B

In conic the semi-latus rectum is the \qquad between the segments of a focal chord.
A. Geometric mean
B. Arithmetic mean
C. Harmonic mean
D. Both A and C

ANSWER: C

If $f^{\prime \prime}(x)>0$, at some point the curve is.
A. Concave upward
B. Concave downward
C. Convex downward
D. Both A and B

ANSWER: D
$B 2-A C>0$, the locus is.
A. Hyperbola
B. Two increasing line
C. Ellipse
D. Both A and B

ANSWER: D

If the point x is distinct from x then it is called.
A. Radius of the nbhd
B. Deleted nbhd
C. Both A and B
D. None

ANSWER: B

If $\{\mathrm{Sn}\}$ converges to I, I is called.
A. Limit of sequence
B. Convergent sequence
C. Divergent sequence
D. None

ANSWER: A

A convergent sequence is called a null sequence, if it converges to.
A. 1
B. 0
C. -1
D. Infinity

ANSWER: B

If a sequence is convergent then it is.
A. Bounded
B. Unbounded
C. Convergent
D. None

ANSWER: A

The point where coordinate axis intersects a surface is called an.
A. Intersection
B. Intercept
C. Curve
D. None

ANSWER: B

If $\mathrm{B} 2-\mathrm{AC}<0$ then locus is.
A. Parabola
B. Hyperbola
C. Ellipse
D. Circle

ANSWER: C

A car park is 60 ft by 140 ft .If each of the measurements is uncertain by 3 in , the maximum area is.
A. $241 / 4$ sq.ft
B. $441 / 8 \mathrm{sq} . \mathrm{ft}$
C. $237 / 4$ sq.ft
D. $513 / 8$ sq. ft

ANSWER: B

If a curve is rotated about a straight line, a surface is generated is called.
A. Axis of rotation
B. Surface of revolution
C. Both A and B
D. None

ANSWER: B

A bounded monotonic increasing sequence converges to its.
A. Least upper bound
B. Greatest lower bound
C. Both A and B
D. None

ANSWER: A

Volume of tetrahedron has its vertices at the points $A(1,-1,2), B(2,0,1), C(0,-2,1), D(-2,2,1)$ are.
A. 2
B. $3^{*} \operatorname{sqrt}(2)$
C. 4
D. 6

ANSWER: A

A function is said to be strictly increasing on a set SCR, if.
A. $f(x 1)<f(x 2)$
B. $f(x 1)>f(x 2)$
C. $f(x 1)$ less than and equal to $f(x 2)$
D. $f(x 1)$ greater than and equal to $f(x 2)$

ANSWER: A

